首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41306篇
  免费   2037篇
  国内免费   2075篇
测绘学   1391篇
大气科学   3611篇
地球物理   8511篇
地质学   16091篇
海洋学   3931篇
天文学   8185篇
综合类   675篇
自然地理   3023篇
  2022年   562篇
  2021年   724篇
  2020年   680篇
  2019年   745篇
  2018年   1214篇
  2017年   1132篇
  2016年   1314篇
  2015年   963篇
  2014年   1295篇
  2013年   2142篇
  2012年   1554篇
  2011年   2026篇
  2010年   1809篇
  2009年   2244篇
  2008年   1907篇
  2007年   1965篇
  2006年   1838篇
  2005年   1375篇
  2004年   1291篇
  2003年   1212篇
  2002年   1304篇
  2001年   1084篇
  2000年   1027篇
  1999年   873篇
  1998年   831篇
  1997年   764篇
  1996年   606篇
  1995年   630篇
  1994年   542篇
  1993年   467篇
  1992年   469篇
  1991年   412篇
  1990年   477篇
  1989年   377篇
  1988年   357篇
  1987年   438篇
  1986年   351篇
  1985年   437篇
  1984年   531篇
  1983年   447篇
  1982年   452篇
  1981年   400篇
  1980年   418篇
  1979年   352篇
  1978年   342篇
  1977年   339篇
  1976年   307篇
  1975年   295篇
  1974年   308篇
  1973年   339篇
排序方式: 共有10000条查询结果,搜索用时 843 毫秒
51.
Transport by southeastern rivers has insignificant influence on the lead concentration of southeastern shelf waters. If the rate of mobilization and transport of lead by these rivers is representative of uncontaminated fluvial transport during the Pleistocene, only about 5% of the prehistoric output of lead to the North Atlantic can be accounted for by river input.Lead concentrations in southeastern shelf waters are similar to those of North Atlantic Water from the upper 1000 m, which is probably similar to the intrusion source water for the shelf. Atmospheric inputs to the shelf of the same magnitude as observed for the Western North Atlantic are difficult to reconcile given the residence time of shelf waters and their lead concentration unless the rate of loss of lead to shelf sediments is about the same as the atmospheric flux.  相似文献   
52.
53.
Monocrystalline quartz inclusions in garnet and omphacite from various eclogite samples from the Lanterman Range (Northern Victoria Land, Antarctica) have been investigated by cathodoluminescence (CL), Raman spectroscopy and imaging, and in situ X‐ray (XR) microdiffraction using the synchrotron. A few inclusions, with a clear‐to‐opalescent lustre, show ‘anomalous’ Raman spectra characterized by weak α‐quartz modes, the broadening of the main α‐quartz peak at 465 cm?1, and additional vibrations at 480–485, 520–523 and 608 cm?1. CL and Raman imaging indicate that this ‘anomalous’α‐quartz occurs as relicts within ordinary α‐quartz, and that it was preserved in the internal parts of small quartz inclusions. XR diffraction circular patterns display irregular and broad α‐quartz spots, some of which show an anomalous d‐spacing tightening of ~2%. They also show some very weak, hazy clouds that have d‐spacing compatible with coesite but not with α‐quartz. Raman spectrometry and XR microdiffraction characterize the anomalies with respect to α‐quartz as (i) a pressure‐induced disordering and incipient amorphization, mainly revealed by the 480–485 and 608‐cm?1 Raman bands, together with (ii) a lattice densification, evidenced by d‐spacing tightening; (iii) the cryptic development of coesite, 520–523 cm?1 being the main Raman peak of coesite and (iv) Brazil micro‐twinning. This ‘anomalous’α‐quartz represents the first example of pressure‐induced incipient amorphization of a metastable phase in a crustal rock. This issue is really surprising because pressure‐induced amorphization of metastable α‐quartz, observed in impactites and known to occur between 15 and 32 GPa during ultrahigh‐pressure (UHP) experiments at room temperature, is in principle irrelevant under normal geological P–T conditions. A shock (due to a seism?) or a local overpressure at the inclusion scale (due to expansion mismatch between quartz and its host mineral) seem the only geological mechanisms that can produce such incipient amorphization in crustal rocks. This discovery throws new light on the modality of the quartz‐coesite transition and on the pressure regimes (non‐lithostatic v. lithostatic) during high‐pressure/UHP metamorphism. In particular, incipient amorphization of quartz could favour the quartz‐coesite transition, or allow the growth of metastable coesite, as already experimentally observed.  相似文献   
54.
55.
56.
57.
In this work, the factors controlling the formation and preservation of high-pressure mineral assemblages in the metamorphosed orthopyroxene-bearing metagranitoids of the Sandmata Complex, Aravalli-Delhi Mobile Belt (ADMB), northwestern India have been modelled. The rocks range in composition from farsundite through quartz mangerite to opdalite, and with varying K2O, Ca/(Ca + Na)rock and FeOtot + MgO contents. A two stage metamorphic evolution has been recorded in these rocks.
An early hydration event stabilized biotite with or without epidote at the expense of magmatic orthopyroxene and plagioclase. Subsequent high-pressure granulite facies metamorphism (∼15 kbar, ∼800 °C) of these hydrated rocks produced two rock types with contrasting mineralogy and textures. In the non-migmatitic metagranitoids, spectacular garnet ± K-feldspar ± quartz corona was formed around reacting biotite, plagioclase, quartz and/or pyroxene. In contrast, biotite ± epidote melting produced migmatites, containing porphyroblastic garnet incongruent solids and leucosomes.
Applying NCKFMASHTO T–M (H2O) and P–T pseudosection modelling techniques, it is demonstrated that the differential response of these magmatic rocks to high-pressure metamorphism is primarily controlled by the scale of initial hydration. Rocks, which were pervasively hydrated, produced garnetiferous migmatites, while for limited hydration, the same metamorphism formed sub-solidus garnet-bearing coronae. Based on the sequence of mineral assemblage evolution and the mineral compositional zoning features in the two metagranitoids, a clockwise metamorphic P–T path is constrained for the high-pressure metamorphic event. The finding has major implications in formulating geodynamic model of crustal amalgamation in the ADMB.  相似文献   
58.
We have investigated the central regions of the galaxies in the NGC 3169/NGC 3166/NGC 3156 group with the multipupil fiber spectrograph of the 6-m telescope; the first (central) galaxy in the group is a spiral (Sa) one and the other two galaxies are lenticular ones. The group is known to have an extended HI cloud with a size of more than 100 kpc that is associated in its position, orientation, and rotation with the central galaxy NGC 3169. The mean age of the stellar populations in the centers of all three galaxies has been found to be approximately the same, ~1 Gyr. Since the galaxies are early-type ones and since NGC 3166 and NGC 3156 show no global star formation, we are dealing here with a synchronous star formation burst in the centers of all three galaxies.  相似文献   
59.
We present the preliminary results of a study of how small stellar systems merge to form larger ones. As we display the families of galaxies in the μe - Re plane (effective surface brightness versus effective radius) we realize that different morphological types occupy different loci, evidencing the different physical mechanisms operating in each family. As proposed by Capaccioli et al. (1992) this diagram is the logical equivalent of the HR diagram for stars. Here we take some initial steps in understanding of how we can establish the evolutionary tracks, solely due to dynamical processes, in the μe - Re plane, ultimately making a dwarf elliptical to turn into a normal elliptical galaxy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号